papers: 2021 / reviews awards

Original papers published in 2021

152
Role of Pyridinic Nitrogen in the Mechanism of the Oxygen Reduction Reaction on Carbon Electrocatalysts
Takeyasu, Kotaro, Furukawa, Moeko, Shimoyama, Yuto, Singh, Santosh K, Nakamura, Junji
Angewandte Chemie International Edition 60, 5121 (2021).
Press release in University of Tsukuba

151
ECoOx electro-catalysts anchored on nitrogen-doped carbon nanotubes for the oxygen evolution reaction
Singh, Santosh K, Takeyasu, Kotaro, Paul, Bappi, Sharmab, Sachin K, Nakamura, Junji
Sustainable Energy & Fuels5, 820 (2021).

Original papers published in 2020


化学 75, 27-32 (2019).
150
Ethanol-ethylene conversion mechanism on hydrogen boride sheets probed by infrared absorption spectroscopy
Fujino, Asahi, Ito, Shin-Ichi, Goto, Taiga, Ishibiki, Ryota, Osuga, Ryota, Kondo, Junko N, Fujitani, Tadahiro, Nakamura, Junji, Hosono, Hideo, Kondo, Takahiro
Physical Chemistry Chemical Physics (2020).

149
Cracking of squalene into isoprene as chemical utilization of algae oil
Kimura, Kazuya, Shiraishi, Kazuma, Kondo, Takahiro, Nakamura, Junji, Fujitani, Tadahiro
Green Chemistry22, 3083-3087 (2020).

148
振動エネルギーが駆動するCO2分子の表面反応
近藤,剛弘, 全,家美, 中村,潤児
表面と真空 63, 629-634 (2020).

147
気体の分子振動で駆動する化学反応―省エネルギープロセスによるCO2からのCH3OH合成を目指して―
近藤, 剛弘, 全, 家美, 中村, 潤児

Original papers published in 2019

146
Vibration-driven reaction of CO2 on Cu surfaces via Eley-Rideal-type mechanism
Jiamei Quan, Fahdzi Muttaqien, Takahiro Kondo, Taijun Kozarashi, Tomoyasu Mogi, Takumi Imabayashi, Yuji Hamamoto, Kouji Inagaki, Ikutaro Hamada, Yoshitada Morikawa & Junji Nakamura
Nature Chemistry available in online (2019).
Press release in University of Tsukuba

145
Platinum nanoparticles supported on reduced graphene oxide prepared in situ by a continuous one-step laser process
Ina Haxhiaj, Sebastian Tigges, Damian Firl, Xiaorui Zhang, Ulrich Hagemann, Takahiro Kondo, Junji Nakamura, Galina Marzuna, Stephan Barcikowski
Appl. Surf. Sci. 469 (2019) 811.

144
Argument on Cu-Zn Active Site for Methanol Synthesis
Kotaro Takeyasu, Tadahiro Fujitani, Junji Nakamura
Accounts of Materials & Surface Research 4 (2019) 9-17.

Original papers published in 2018

143
Active sites in Nitrogen - Doped Carbon Materials for Oxygen Reduction Reaction
Riku Shibuya, Takahiro Kondo, Junji Nakamura
Carbon‐Based Metal‐Free Catalysts: Design and Applications, I Chap. 8 (2018).

142
Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen‐Doped Carbon Materials.
Santosh K. Singh, Kotaro Takeyasu, Junji Nakamura
Advanced Materials (2018) 1804297.

141
Bottom-up design of nitrogen-containing carbon catalysts for the oxygen reduction reaction.
Riku Shibuya, Takahiro Kondo, Junji Nakamura
ChemCatChem 10 (2018) 2019-2023.

Original papers published in 2017

140
Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst.
Jun-ichi Fujita, Takaki Hiyama, Ayaka Hirukawa, Takahiro Kondo, Junji Nakamura, Shin-ichi Ito, Ryosuke Araki, Yoshikazu Ito, Masaki Takeguchi, and Woei Wu Pai
Scientific Reports 7 (2017) 12371.

139
Formation and characterization of hydrogen boride sheets derived from MgB2 by cation exchange.
Hiroaki Nishino, Takeshi Fujita, Nguyen Thanh Cuong, Satoshi Tominaka, Masahiro Miyauchi, Soshi Iimura, Akihiko Hirata, Naoto Umezawa, Susumu Okada, Eiji Nishibori, Asahi Fujino, Tomohiro Fujimori, Shin-ichi Ito, Junji Nakamura, Hideo Hosono, Takahiro Kondo
J. Am. Chem. Soc. 139 (2017) 13761-13769.
 プレスリリース(筑波大HP 注目の研究)

138
Comment on “Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts”.
Junji Nakamura, Tadahiro Fujitani, Sebastian Kuld, Stig Helveg, Ib Chorkendorff, Jens Sehested
Science 357 (2017) eaan8074.

137
Formation Mechanism of Boron-Based Nanosheet through the Reaction of MgB2 with Water.
Hiroaki Nishino, Takeshi Fujita, Akiyasu Yamamoto, Tomohiro Fujimori, Asahi Fujino, Shin-ichi Ito, Junji Nakamura, Hideo Hosono, Takahiro Kondo
J. Phys. Chem. C 121 (2017) 10587-10593.

136
Peptide Crosslinkers: Immobilization of Platinum Nanoparticles Highly Dispersed on Graphene Oxide Nanosheets with Enhanced Photocatalytic Activities.
Tsukasa Mizutaru, Galina Marzun, Sebastian Kohsakowski, Stephan Barcikowski, Dachao Hong, Hiroaki Kotani, Takahiko Kojima, Takahiro Kondo, Junji Nakamura, and Yohei Yamamoto
ACS Appl. Mater. Interfaces 9 (2017) 9996-10002.

135
Energy Transfer Dynamics of Formate Decomposition on Cu(110).

Jiamei Quan, Takahiro Kondo, Guichang Wang, Junji Nakamura
Angew. Chem. Int. Ed. 56 (2017) 3496-3500.
Angew. Chem. 129 (2017) 3550-3554.
Selected as a front cover picture (HP link is here) (PDF is here)
Selected as a Hot Paper


Original papers published in 2016

134
Effect of pH on the Spontaneous Synthesis of Palladium Nanoparticles on Reduced Graphene Oxide
Xiaorui Zhang, Wataru Ooki, Yoshinori R. Kosaka, Akinori Okonogi, Galina Marzun, Philipp Wagener, Stephan Barcikowski, Takahiro Kondo, Junji Nakamura
Appl. Surf. Sci. 389 (2016) 911-915.

133
Enwrapping Conjugated Polymer Microspheres with Graphene Oxide Nanosheets
Yusuke Aikyo, Soh Kushida, Daniel Braam, Junpei Kuwabara, Takahiro Kondo, Takaki Kanbara, Junji Nakamura, Axel Lorke, Yohei Yamamoto
Chem. Lett. 45 (2016) 1024-1026.

132
Lewis Basicity of Nitrogen-Doped Graphite Observed by CO2 Chemisorption.
Hisao Kiuchi, Riku Shibuya, Takahiro Kondo, Junji Nakamura, Hideharu Niwa, Jun Miyawaki, Maki Kawai, Masaharu Oshima and Yoshihisa Harada
Nanoscale Research Letters 11 (2016) 127-1~127-7.

131
Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts.
Donghui Guo, Riku Shibuya, Chisato Akiba, Shunsuke Saji, Takahiro Kondo, Junji Nakamura
Science 351 (2016) 361-365.
 プレスリリース(筑波大HP 注目の研究)
 Reprint PDF (permitted by AAAS/Science)
 Nature Nanotechnology, Research Highlightsに選出:English, 日本語


130
Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering.
Hisao Kiuchi, Takahiro Kondo, Masataka Sakurai, Donghui Guo, Junji Nakamura, Hideharu Niwa, Jun Miyawaki, Maki Kawai, Masaharu Oshima and Yoshihisa Harada
Physical Chemistry Chemical Physics 18 (2016) 458~465.


Original papers published in 2015

129
Observation of Landau levels on nitrogen-doped flat graphite surfaces without external magnetic fields.
Takahiro Kondo, Donghui Guo, Taishi Shikano, Tetsuya Suzuki, Masataka Sakurai, Susumu Okada, and Junji Nakamura
Scientific Reports 5 (2015) 16412-1~16412-8.
 プレスリリース(筑波大HP 注目の研究)

128
Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts.
Galina Marzuna, Junji Nakamura, Xiaorui Zhang, Stephan Barcikowski, Philipp Wagener
Applied Surface Science 348 (2015) 75~84.

Original papers published in 2014

127
Principles and Application of Heterodyne Scanning Tunnelling Spectroscopy.
Eiji Matsuyama, Takahiro Kondo, Haruhiro Oigawa, Donghui Guo, Shojiro Nemoto & Junji Nakamura
Scientific Reports 4 (2014) 6711-1~6711-5.
 プレスリリース(筑波大HP 注目の研究)

126
Ligand-free gold atom clusters adsorbed on graphene nano sheets generated by oxidative laser fragmentation in water.
Marcus Lau, Ina Haxhiaj, Philipp Wagener, Romuald Intartaglia, Fernando Brandi, Junji Nakamura, Stephan Barcikowski
Chemical Physics Letters 610-611 (2014) 256-260.

Original papers published in 2013

125
Size Control to a Sub-Nanometer Scale in Platinum Catalysts on Graphene.
Rikson Asman Siburian, Takahiro Kondo, and Junji Nakamura
J. Phys. Chem. C 117 (2013) 3635-3645.

Original papers published in 2012

124
Formation Process of Pt Subnano-Clusters on Graphene Nanosheets.
Rikson Asman Siburian and Junji Nakamura
J. Phys. Chem. C 116 (2012) 22947-22953.

123
Observation of Landau levels in potassium-intercalated graphite under a zero magnetic field.
Donghui Guo, Takahiro Kondo, Takahiro Machida, Keigo Iwatake, Susumu Okada and Junji Nakamura
Nature Communications 3 (2012) 1068, 1-6.
 NPG "注目の論文"で紹介
 プレスリリース(日本語解説PDF)

122
Scattering of CO and N2 Molecules by a Graphite Surface.
Junepyo Oh, Takahiro Kondo, Keitaro Arakawa, Yoshihiko Saito, Junji Nakamura, W. W. Hayes and J. R. Manson
J. Phys.: Condensed Matter 24 (2012) 354001, 1-11.

121
Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms.
Takahiro Kondo, Simone Casolo, Tetsuya Suzuki, Taishi Shikano, Masataka Sakurai, Yoshihisa Harada, Makoto Saito, Masaharu Oshima, Mario Italo Trioni, Gian Franco Tantardini and Junji Nakamura
Phys. Rev. B 86 (2012) 035436, 1-6.

120
N-doped Graphene Nanosheets for Li-air Fuel Cell under Acidic Condition.
E.Yoo, J.Nakamura, H.Zhou
Energy & Environmental Science 5 (2012) 6928-6932.

119
Adsorption of CO on Iron Clusters on Graphite.
Junepyo Oh, Takahiro Kondo, Daigo Hatake, Keitaro Arakawa, Tetsuya Suzuki, Daiichiro Sekiba, and Junji Nakamura
J. Phys. Chem. C 116 (2012) 7741-7747.

118
N2 emission-channel change in NO reduction over stepped Pd(211) by angle-resolved desorption.
Tatsuo Matsushima, Anton Kokalj, Hideo Orita, Toshitaka Kubo, Masataka Sakurai, Takahiro Kondo, Junji Nakamura
Surface Science 606 (2012) 1029-1036.

117
Scattering of O2 from a Graphite Surface.
W. W. Hayes, Junepyo Oh, Takahiro Kondo, Keitaro Arakawa, Yoshihiko Saito, Junji Nakamura and J. R. Manson
J. Phys.: Condensed Matter 24 (2012) 104010, 1-9.

Original papers published in 2011

116
Angular intensity distribution of a molecular oxygen beam scattered from a graphite surface.
Junepyo Oh, Takahiro Kondo, Keitaro Arakawa, Yoshihiko Saito, W, W. Hayes, J. R. Manson and Junji Nakamura
J. Phys. Chem. A 115 (2011) 7089-7095.

115
Effect of co-absorbed CO and reaction temperature on the dynamics of N2 desorption under steady-state N2O-CO reaction on Rh(110).
Masataka Sakurai, Takahiro Kondo and Junji Nakamura
J. Chem. Phys. 134 (2011) 204710, 1-7.

114
Nitrogen Doping of Graphite for Enhancement of Durability of Supported Platinum Clusters.
Takahiro Kondo, Tetsuya Suzuki, and Junji Nakamura
J. Phys. Chem. Lett. 2 (2011) 577-580.

Original papers published in 2010

113
Edge states propagating from a defect of graphite: Scanning tunneling spectroscopy measurements.
Takahiro Kondo, Yujiro Honma, Junepyo Oh, Takahiro Machida and Junji Nakamura
Phys. Rev. B 82 (2010) 153414, 1-4.

112
Structure sensitivity for forward and reverse water-gas shift reactions on copper surfaces: A DFT study.
Guichang Wang, Junji Nakamura
J. Phys. Chem. Lett. 1 (2010) 3053-3057.

111
Sub-nano Pt Cluster Supported on Graphene Nanosheets for CO tolerant Catalysts in Polymer Electrolyte Fuel Cells.
EunJoo Yoo, Tatsuhiro Okada, Tomoaki Akita, Masanori Kohyama, Itaru Honma and Junji Nakamura
J. Power Sources 196 (2010) 110-115.

110
He/Ar-atom scattering from molecular monolayers: C60/Pt(111) and graphene/Pt(111).
Y Yamada, C Sugawara, Y Satake, Y Yokoyama, R Okada, T Nakayama, M Sasaki, T Kondo, J Oh, J Nakamura, and W W Hayes
J. Phys.: Condensed Matter 22 (2010) 3040100, 1-6.

109
He and Ar beam scatterings from bare and defect induced graphite surfaces.
Junepyo Oh, Takahiro Kondo, Daigo Hatake, Yujiro Honma, Keitaro Arakawa, Takahiro Machida and Junji Nakamura
J. Phys.: Condensed Matter 22 (2010) 304008, 1-6.

108
Hydrogen storage in Pd?Ni doped defective carbon nanotubes through the formation of CHx (x = 1, 2).
Lizhen Gao, E. Yoo, Junji Nakamura, Weike Zhang and Hui Tong Chua
Carbon 48 (2010) 3250-3255.

107
Angle resolved intensity and velocity distributions of N2 desorbed by N2O decomposition on Rh(110).
Takahiro Kondo, Masataka Sakurai, Tatsuo Matsushima and Junji Nakamura
J. Chem. Phys. 132 (2010) 134704, 1-9.

106
Significant reduction in adsorption energy of CO on platinum clusters on graphite.
Junepyo Oh, Takahiro Kondo, Daigo Hatake, Yosuke Iwasaki, Yujiro Honma, Yoshiyuki Suda, Daiichiro Sekiba, Hirosh Kudo, Junji Nakamura
J. Phys. Chem. Lett. 1 (2010) 463-466.

Original papers published in 2009

105
Formation of nonbonding π electronic states of graphite due to Pt-C hybridization.
Takahiro Kondo, Yosuke Iwasaki, Yujiro Honma, Yoshiteru Takagi, Susumu Okada and Junji Nakamura
Phys. Rev. B 80 (2009) 233408. (4pages)

104
Formate Adsorption on Cu(110), Ag(110) and Au(110) Surfaces.
Pang Xian-Yong, Xing Bin, Wang Gui-Chang, Yoshitada, Morikawa, Junji, Nakamura
Acta Physico-Chimica Sinica 25 (2009) 1352-1356.

103
Decomposition of metal carbides as an elementary step of carbon nanotubes synthesis.
Lei Ni, Keiji Kuroda, Ling-Ping Zhou, Keishin Ohta, Kiyoto Matsuishi, Junji Nakamura
Carbon 47 (2009) 3054-3062.

102
Enhanced electrocatalytic activity of Pt sub-nano clusters on graphene nanosheet surface.
EunJoo Yoo, Tatsuhiro Okada, Tornoki Akita, Masanori Kohyama, Junji Nakamura and Itaru Honma
Nano Letters 9 (2009) 2255-2259.

101
Elastic and inelastic scattering components in the angular intensity distribution of He scattered from graphite.
JunePyo Oh, Takahiro Kondo, Daigo Hatake and Junji Nakamura,
Surface Science 603 (2009) 894-899.

Original papers published in 2008

100
An Extremely Active Pt/Carbon Nano-Tube Catalyst for Selective Oxidation of CO in H2 at Room Temperature.
Ken-ichi Tanaka, Masashi Shou, Hongbin Zhang, Youzhu Yuan, Tokio Hagiwara, Atsushi Fukuoka, Junji Nakamura, Daling Lu,
Catalysis Letters 126 (2008) 89-95.

99
Novel Support Materials for Fuel Cell Catalysts,
Junji Nakamura
Molecular Catalysts for Energy Conversion, Springer Series in Materials Science 111 (2008).

98
Promoted catalytic activity of a platinum monolayer cluster on graphite.
Takahiro Kondo, Ken-ichi Izumi, Kenji Watahiki, Yosuke Iwasaki, Tetsuya Suzuki and Junji Nakamura
J. Phys. Chem. C 112 (2008) 15607-15610.

97
Support effect of anode catalysts using an organic metal complex for fuel cells.
JunePyo Oh, Eunjoo Yoo, Chisato Ono, Tokushi Kizuka, Tatsuhiro Okada and Junji Nakamura
Journal of Power Sources 185 (2008) 886-891.

96
Photocoupling of methane in water vapor to saturated hydrocarbons.
JunePyo Oh, Taketoshi Matsumoto, and Junji Nakamura
Catal. Lett. 124 (2008) 215-218.

95
A New CO Tolerant Electro-catalyst based on Platinum and Organic Metal Clusters for Reformate Fuel Cells.
Eunjoo Yoo, Tatsuhiro Okada, Junji Nakamura
Electrochemical and Solid-State Letters. 11 (2008) B96-B100.

94
Effect of carbon substrate materials as a Pt-Ru catalyst support on the performance of direct methanol fuel cells.
Eunjoo Yoo, Tatsuhiro Okada, Tokushi Kizuka, Junji Nakamura
J. Power Sources 180 (2008) 221-226.

93
Three-Ni-atom cluster formed by sulfur adsorption on Ni(111).
Masamichi Yamada, Hidemi Hirashima, Akihiko Kitada, Ken-ichi Izumi, Junji Nakamura
Surf. Sci. 602 (2008) 1659-1668.

Original papers published in 2007

92
Effects of hydrogen on carbon nanotube formation in CH4/H2 plasmas.
Atsushi Okita, Yoshiyuki Suda, Akinori Oda, Junji Nakamura, Atsushi Ozeki, Krishnendu Bhattacharyya, Hirotake Sugawara, Yosuke Sakai
Carbon 45 (2007) 1518-1526.

91
Effect of Various Carbon Substrate Materials on the CO Tolerance of Anode Catalysts in Polymer Electrolyte Fuel Cells.
Eunjoo Yoo, Tatsuhiro Okada, Tokushi Kizuka, Junji Nakamura
Electorochmistry 75 (2007) 146-148.

Original papers published in 2006

90
Analysis of Oxidation State of Multi-Layered Catalyst Thin Films for Carbon nanotube Growth Using Plasma-Enhanced Chemical Vapor Deposition.
Atushi Okita, Atsushi Ozeki, Yoshiyuki Suda, Junji Nakamura, Akinori Oda, Krishnendu Bhattacharyya, Hirotake Sugawara and Yosuke Sakai,
Japan Journal of Applied Physics. 45 (2006) 8323-8329.

89
Efficient Thermal Conversion of Poly(pyridinediylbutadiylbutadiynylene)s to Nitrogen-containing Microporous Carbon.
Masashi Kijima, Takayuki Oda, Takahisa Yamazaki, Yasunori Tazaki, and Junji Nakamura
Chemistry Letters. 35 (2006) 844-845.

88
Reduction of Pt Usage in Fuel Cell Electrocatalysts Using Carbon Nanotubes and Non-Pt Metals.
E.Yoo, Y.Nagashima, T.Matsumoto, and J.Nakamura
Polymers for advanced Technologies. 17 (2006) 540-543.

87
Kinetic Study of Carbon Nanotube Synthesis over Mo/Co/MgO Catalysts.
Lei Ni, Keiji Kuroda, Ling-Ping Zhou, Tokushi Kizuka, Keishin Ohta, and Junji Nakamura,
Carbon. 44 (2006) 2265-2272.

86
Fuel cell anode composed of Mo2C catalyst and carbon nanotube electrode.
Taketoshi Matsumoto, Yuji Nagashima, Takahisa Yamazaki and Junji Nakamura
Electrochemical and Solid-State Letters 9 (2006) A160-A162 .

85
Predicting the amount of carbon in carbon nanotubes grown by CH4 rf plasmas.
A.Okita, Y.Suda, A.Ozeki, H.Sugawara, Y.Sakai, A.Oda, J.Nakamura
J. Appl. Phys. 99 (2006) 014302 .

84
Why is formate synthesis insensitive to the copper surface structure?
Guichang Wang, Yoshitada Morikawa, Taketoshi Matsumoto and Junji Nakamura,.
J. Phys. Chem. B 110 (2006) 9-11.

Original papers published in 2005

83
Cluster and periodic DFT calculations of the adsorption of atomic nitrogen on the M(111) (M = Cu, Ag, Au) surfaces.
Gui-Chang Wang, Ling Jiang, Xian-Yong Pang, Junji Nakamura
J. Phys. Chem. B 109 (2005) 17943-17950.

82
Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials.
Yoo eunjoo, Taichi Habe and Junji Nakamura
Science and Technology of Advanced Materials. 6 (2005) 615-619.

81
Kinetic Mechanism of Methanol Decomposition on Ni(111) Surface: A Theoretical Study.
G.-C.Wang, Y-H.Zhou, Y.Morikawa, J.Nakamura, Z-S.Cai, X-Z.Zhao
J. Phys. Chem. B 109 (2005) 12431-12442.

80
The relationship between adsorption energies of methyl on metals and metallic electronic properties: A first-principles DFT study.
Gui-Chang Wang, Jun Li, Xiu-Fang Xu, Rui-Fang Li, and Junji Nakamura
J. Computational Chem. 26 (2005) 865-870.

79
Function and structure of Mo/Ni/MgO catalysts for the synthesis of thin carbon nanotubes.
L.Zhou, K.Ohta, K.Kuroda, K.Matsuishi, M.Kijima, L.Gao, H.Nakano, T.Matsumoto, and J.Nakamura
J. Phys. Chem. B 109 (2005) 4439-4447.

78
Characterization of methoxy adsorption on some transition metals: A first principles density functional theory study.
G.Wang, Y.Zhou and J.Nakamura
J. Chem. Phys. 122 (2005) 44707-44713.

Original papers published in 2004

77
Atomic hydrogen storage in carbon nanotubes promoted by metal catalysts
E.Yoo, T.Komatsu, N.Yagai, K.Arai, T.Yamazaki, K.Matsuishi, T.Matsumoto and J. Nakamura
J. Phys. Chem B 108 (2004) 18903-18907.

76
Cluster and periodic DFT calculations of adsorption and activation of CO2 on the Cu(hkl) surfaces.
Gui-Chang Wang , Ling Jiang, Yoshitada Morikawa , Junji Nakamura, Zun-Sheng Cai, Yin-Ming Pan and Xue-Zhuang Zhao,
Surf. Sci. 570 (2004) 205-217.

75
ステップエッジと触媒活性―Ni(111)上でのH2SおよびCOの解離.
北田暁彦、平島秀水、小川淳也、中野美尚、松本健俊、中村潤児,
表面科学 25 (2004) 580-585.

74
Efficient usage of highly despersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells.
T.Matsumoto, T.Komatsu, K.Arai, T.Yamazaki, M.Kijima, H.Shimizu, Y.Takasawa, and J.Nakamura,
Catalysis Today. 90 (2004) 277-281.
Selected as "Top-50 most cited articles" published in Elsevier's Catalysis journals 2004 - 2008

73
Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes.
T.Matsumoto, T.Komatsu, K.Arai, T.Yamazaki, M.Kijima, H.Shimizu, Y.Takasawa, and J.Nakamura,
Chem.Commu. 840-841 (2004).

2003以前

入力中です。 とりあえずこちらへ

Books and Reviews

38
窒素ドープグラフェンの触媒活性点
近藤剛弘,中村潤児,
二次元物質の科学 グラフェンなどの分子シートが生み出す新世界,日本化学会編 化学同人 (2017) 94-100.

37
モデル触媒で解明した酸素還元反応に対する窒素ドープ炭素材料の活性点
中村潤児, 近藤剛弘,郭東輝, 渋谷陸, 秋葉千聖, 佐治俊輔
2017年号 (2016年サイエンス誌に載った日本人研究者) (2017) 17.

36
最近のトピックス 白金代替触媒の活性点が特定された!-モデル研究で明らかにされた窒素ドープ炭素触媒
渋谷陸, 近藤 剛弘,中村潤児
化学 71 (2016)68-69.

35
「第5-3章 燃料電池の酸素極への応用」
近藤 剛弘,中村潤児
酸化グラフェンの機能と応用(株式会社シーエムシー出版, 2016)150-161.

34
Fuel cell catalysts based on carbon nanomaterial
Junji Nakamura, Takahiro Kondo
Carbon Nanomaterials for Advanced Energy Systems: Advances in Materials Synthesis and Device Applications, Ed. W. Lu, J. B. Baek, L. M. Dai. (John Wiley & Sons Inc., 2015) 267-294.

33
グラフェン担持電極触媒における担体効果
中村 潤児
Electrochemistry 81 (2013) 650-654.

32
Support Effects of Carbon on Pt Catalysts
Junji Nakamura, Takahiro Kondo
Topics in Catalysis 56 (2013) 1560-1568.

31
カリウムをドープしたグラファイトに無磁場下で出現するランダウ準位
近藤剛弘,郭東輝,中村潤児
日本物理学会誌 68(2013) 371-377.

30
グラフェンの反応性と触媒への応用
中村潤児
化学と工業 66-4(2013) 307-309.

29
筑波大学数理物質系 中村表面化学研究室 表面基礎科学と触媒開発の融合
触媒学会誌, 55(2013) 249.

28
第6章 第1節 「グラフェンを用いた燃料電池電極触媒」
中村潤児,Siburian Rikson
「グラフェンが拓く材料の新領域 -物性・作成法から実用化まで-」株式会社エヌ・ティー・エス  (2012) 192-199.

27
理工系の基礎化学
中村潤児,神原 貴樹
化学同人 (2012)

26
グラフェンを利用した燃料電池電極触媒
中村潤児
触媒54(2012) 398-403.

25
第6節 カーボンアロイ触媒、最適活性点形成の解明について
近藤剛弘,中村潤児
燃料電池要素技術~触媒・電解質膜・MEAとその低コスト・高信頼・高機能化~ (情報機構, 2011)131-142.

24
カーボンナノチューブを担体とした電極触媒
中村潤児,近藤剛弘
表面科学 32(2011) 704-709.

23
ベーシック表面化学
岩澤康裕,中村潤児,福井賢一,吉信淳
化学同人 (2010) 1-226.

22
グラファイト表面上の単原子層Pt触媒
近藤 剛弘,中村潤児
J. Vac. Soc. Jpn. 53(2010)123-128.

21
「7.2章 実験によるカーボンアロイ触媒の発現原理」
近藤 剛弘,中村潤児
白金代替カーボンアロイ触媒 (株式会社シーエムシー出版, 2010)139-149.

20
表面科学から見た脱白金電極触媒の設計指針
中村潤児,近藤 剛弘
機能材料 29 (2009)58-64.

20
カーボンナノチューブを用いた耐CO性燃料電池電極触媒
劉銀珠,中村潤児
燃料電池 8 (2009) 46-52.

19
カーボンナノチューブを担体とした燃料電池電極触媒の表面科学
近藤剛弘,中村潤児
J. Phys. Soc. Jpn. 51 (2008) 245-249.

18
白金/炭素界面制御による燃料電池電極触媒の開発
中村潤児,近藤剛弘
マテルアルズインテグレーション 10 (2007) 44-48.

17
カーボンナノチューブを用いた電極の調製と応用の可能性
中村潤児
MATERIAL STAGE、7 (2007) 35-37.

16
燃料電池におけるカーボンナノチューブ担持電極触媒の特異性
中村潤児
炭素素原料科学と材料設計 IX (2007) 83-92.

15
カーボンナノチューブ担持燃料電池電極触媒
中村潤児
ケミカルエンジニヤリング、52-53 (2007) 25-29.

14
金属表面上のVM6O12クラスターとCaF2クラスター
中村潤児
表面科学, 26 (2005) 367.

13
いかにして表面科学を触媒化学に適用するか
中村潤児
ペトロテック, 28 (2005) 244-248.

12
STMによる触媒反応速度論の新展開
中村潤児
触媒, 43 (2000) 631-636.

11
単一分子の結合形成と振動スペクトルをSTMで観る
中村潤児
化学 55 (2000) 58-59.

10
触媒反応とSTM
中村潤児
表面科学, 20 (1999) 321-328.

9
金属表面の STM
中村潤児
応用物理学会薄膜・表面物理分科会,NEWS LETTERS 103 (1998) 15-22.

8
表面科学と触媒研究の接点ー高圧反応器と単結晶モデル触媒を用いる手法ー
中村潤児
触媒, 40 (1998) 250-256.

7
固体触媒の活性点をSTMで観る
中村潤児
化学 , 52 (1997) 68-69.

6
表面科学的手法を使って触媒の作用を理解する
中村潤児
ペテロテック,19 (1994) 558-559.

5
メタノール合成モデル触媒にみる活性点の機能
中村潤児,藤谷忠博,内島俊雄,
表面, 34 (1996) 527-541.

4
天然ガス化学の新しい動向ー合成ガス製造を中心としてー
平勝臣,早川孝,中村潤児,内島俊雄
ペテロテック, 17(1994) 838-845.

3
メタンのCO2による接触改質反応
中村潤児,内島俊雄
触媒, 35 (1993) 478-484 .

2
触媒反応における素過程の速度測定と解析法
中村潤児,国森公夫,内島俊雄
表面科学, 12 (1991) 480-490.

1
単結晶表面での触媒反応の動的解析
中村潤児,C.T.Campbell
触媒, 32 (1990) 522-530.