1．By taking logarithms of the both sides，find the derivative for $y=x^{x}(x>0)$ ．
$\log y=\log x^{x}$

$$
\begin{gathered}
\frac{d}{d y}(\log y)=\frac{y^{\prime}}{y} \quad \frac{d}{d x}\left(\log x^{x}\right)=\frac{d}{d x}(x \log x)=1 \cdot \log x+x \cdot \frac{1}{x}=\log x+1 \\
\therefore \frac{y^{\prime}}{y}=\log x+1
\end{gathered} \quad \therefore y^{\prime}=y(\log x+1)=x^{x}(\log x+1)
$$

2.

$$
f(x)=\left\{\begin{array}{cl}
e^{-x^{2}} & (x>0) \\
0 & (x=0) \\
-e^{-x^{2}} & (x<0)
\end{array}\right.
$$

i．Calculate the limitting values of $\lim _{x \rightarrow+0} f^{\prime}(x)$ and $\lim _{x \rightarrow-0} f^{\prime}(x)$ ．
ii．Say $f(x)$ is differential at $x=0$ or not．

i．Since the functions of $g(x)=x^{2}, h(x)=e^{x}$ and $s(x)=-x$ are differentiable for $x \neq 0$ ，the function $f(x)$ constituted by them is also differentiable for $x \neq 0$ ．

$$
f^{\prime}(x)=e^{-x^{2}} \cdot(-2 x) \rightarrow 0 \quad(x \rightarrow \pm 0)
$$

ii．At $x=0$ ，

$$
\lim _{h \rightarrow+0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow+0} \frac{e^{-h^{2}}-0}{h}=+\infty \quad \lim _{h \rightarrow-0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow-0} \frac{e^{-h^{2}}-0}{h}=-\infty
$$

The slope of a curve does not exist at $x=0$ ，i．e．$f(x)$ is not differentiable at $x=0$ ．

Both of the limitting values of $\lim _{x \rightarrow+0} f^{\prime}(x)$ and $\lim _{x \rightarrow-0} f^{\prime}(x)$ are zero and coincident with each other． However，the slope of the curve does not exist at $x=0$ since $f(x)$ is discontinuous at $x=0$ ．

