物性工学特論第9回前半 2024.12.10

結晶物理研究室 (高橋研究室)

「結晶構造から調べる物性」

- 回折法とは

- 量子ビームを用いた構造研究

- CuPdFe三元合金の特異な規則・不規則相転移
- 有機・無機複合結晶ペロブスカイト型化合物(CH3NH3SnI3など)
- スズの *α β* 相転移

- 実験装置

-試料作製

-X線回折

-中性子散乱

- 研究室の目指すもの

h;プランク定数、c;光速度、m;中性子、電子の質量

エネルギー E と波長 λ の多様な関係
ナノ構造を異なるエネルギースケールで測定

周期律表

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1						1 H	4							-		-	-	2 He	
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne	
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
7	87 Fr	88 Ra		104 Du	105 Jo	106 Rf	107 Bh	108 Ha	109 Mt										

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

立方格子のコーナーと<mark>体心</mark>を <mark>同じ</mark>原子が占める

立方格子のコーナーと<mark>面心</mark>を 同じ原子が占める

面心立方構造

規則相 CsCI型構造

規則相 Cu₃Au型構造

立方格子のコーナーと<mark>体心</mark>を <mark>異なる</mark>原子が占める

立方格子のコーナーと<mark>面心</mark>を <mark>異なる</mark>原子が占める

合金の規則・不規則相転移 不規則相 不規則相 bcc fcc 相転移メカニズムは不明 Cu-Pd 大きな格子変形 規則相 CsCI型構造 規則相 CsCI型構造

周期律表

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1						1 H	4											2 He	
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne	
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
7	87 Fr	88 Ra		104 Du	105 Jo	106 Rf	107 Bh	108 Ha	109 Mt										

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Feの構造相転移

910°Cより高温側でfcc構造、低温側でbcc構造に相転移するFeをCu-Pd合金に 加えると・・・

中性子線回折測定: J-PARC・物質・生命科学実験施設MLF・BL19 工学材料回折装置 匠 (室温~1000°C;赤外線炉)

測定試料:各試料に直接熱電対を取り付ける

測定に用いた赤外線炉

中性子は数cmオーダーの塊状態(bulk)で試料全体の構造をみることができる (試料表面に生じる酸化などの影響がほとんど無い)

鉛フリーペロブスカイト型太陽電池材料 CH₃NH₃SnI₃

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1						1												2 He	
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne	
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
7	87 Fr	88 Ra		104 Du	105 Jo	106 Rf	107 Bh	108 Ha	109 Mt										

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

鉛フリーペロブスカイト型太陽電池材料

X線と中性子の散乱能の比較

水素を基準とした各原子のX線および中性子線強度

	н	С	N	I	Sn	
X 線	1	36	49	2809	2500	
中性子線	1 ※	3.2	6.3	2.0	2.8	

*Hに対する中性子線の散乱振幅は負

	散乱	散乱能	長所
X線	電子	電子数	電子数の多い元素の位置特定
中性子	原子核	元素によってラ ンダムな値	Hの位置を特定 電子数の近い元素の区別

X線回折と中性子回折を相補的に用いることで 有機部分の明確な観測が可能

X線でみる電子密度分布と中性子でみる核密度分布

温度変化による逐次相転移

無機-有機間相互作用は相転移を引き起こす

有機分子の配向は低温で秩序化していき、無機八面体は回転しながら歪む

n	

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1						1 H	4							\frown				2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Du	105 Jo	106 Rf	107 Bh	108 Ha	109 Mt									

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

n

フェルミ面近傍の電子の状態密度

*)時間反転対称性と空間反転対称性が保存された場合に現れ、特異な物性が期待される物質

α-Sn単結晶

半導体α-Snの電子密度分布

共有結合電子を観測

電気炉 ~1000℃で試料を加熱

水溶液から育成

研究室G218

<mark>単結晶低温4軸回折装置</mark> ラウエ写真用装置 低温2軸回折装置

低温窒素吹付け型4軸回折計 RIGAKU AFC7R 学内共通施設(学内) 2軸回折装置 XpertPro

共通施設(学外)

KEK放射光施設PF

大強度:実験室系X 線の10³~10⁶倍 連続スペクトル:10⁻¹~10³Å

微弱なシグナルを波長を選択して測定可能

特殊環境微小単結晶中性子構造解析装置 「千手」[1]

J-PARC-世界最強クラスの中性子源-

http://jparc.jp/researcher/MatLife/ja/instrumentation/ns.html

中性子実験装置23台、	
ミュオン実験装置3台稼動	

筑波大学外の様々な機関の研究者とともに実験や議論を行う 研究室の目指すもの

- 低熱熱膨張合金Fe-Ni-Cuの構造ゆらぎと磁性に関する研究
- ゼロギャップ半導体 α-Sn化合物の構造および半導体特性の研究
- Pt、Pdと3d遷移金属からなる合金の原子配列と磁性、電気特性

有機・無機複合物質の研究

- 鉛フリーペロブスカイト型化合物における有機部の構造ゆらぎと相転移

- 低糖類にみられる生体保護作用の機構解明

オープンハウスのお知らせ

場所:3G218

期間:オープンハウス期間中は随時、期間外でも対応します(要連絡) 連絡先:853-5288(居室)、853-5049(実験室)

メール; takahasi@bk.tsukuba.ac.jp

※本日紹介した内容は研究室HPでもみることができます

http://www.ims.tsukuba.ac.jp/~diffraction_lab/index.htm